ABSTRACT

Objectives: to examine the feasibility and to perform a cost benefit analysis of a 5-sample pooling strategy using an enzyme immunoassay (EIA) for the screening of hepatitis B surface antigen (HBsAg).

Material and methods: to assess the sensitivity and specificity of the pooling method, each of the 40 positive sera (from weak to intensely HBsAg-positive) and 250 negative sera were tested in a pool with 4 HBsAg-negative sera. The limit of detection for HBsAg/ad and HBsAg/ay was evaluated using sera from a panel of purified subtypes. A study under real conditions was conducted using pools from 340 pregnant women.

Results: the sensitivity and specificity of this technique were 100%. The correlation coefficient among the sample/cutoff ratios of 40 samples studied in single and in pooled conditions was 0.792 (p < 0.005). The pooling method has lower levels of detection for HBsAg/ad and HBsAg/ay at 0.20 ng/mL and 0.12 ng/mL, and the single method at 0.34 ng/mL and 0.29 ng/mL, respectively. The pooling method loses no sensitivity for values up to 100 IU/L of anti-HBs in the four sera mixed with a positive serum. The cost-benefit analysis showed that the pooling method could save from 30% up to 75% of the cost of HBsAg determination, according to whether seroprevalences were 10% or 1%, respectively.

Conclusions: the pooled HBsAg EIA yielded no worse than the single EIA test, and was a cost-effective and valid strategy in areas with a high, medium or low prevalence.

Key words: Hepatitis B surface antigen. Pooling sera. Cost-benefit analysis.

INTRODUCTION

Hepatitis B virus (HBV) infection is a disease affecting millions of people worldwide. Its main reservoir is that of chronic HBV carriers. It is estimated that some 300 million people throughout the world are infected by this virus (1). The medical consequences of HBV infection are both variable and unpredictable, depending on factors such as patient age and immune status. HBV is a well recognized etiologic agent for chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma.

Great differences exist, however, in the prevalence of the infection, and this has led to the establishment of three major areas of high, medium, and low endemicity (2). In most developed countries, the prevalence of chronic HBV carriers is less than 2%, and infection transmission takes place, above all, in adults belonging to certain risk groups (drug users, homosexual men, promiscuous heterosexuals, health workers) (3). In Spain, a 1.2% prevalence of HBV carriers has been found (4), and the identification of HBsAg in blood donors, pregnant women and subjects undergoing auto-transfusion programs is mandatory.

The serum pooling technique attempts to reduce costs without losing efficacy, and has been mainly used in developing countries in the search for antibodies against the human immunodeficiency virus (HIV) (5-14), and hepatitis C virus (HCV) (15-19). The results obtained with this method have proved highly promising, as they have significantly decreased the cost of laboratory tests without significantly decreasing their sensitivity.

The present study attempts to assess whether the serum pooling technique is applicable in the detection of HBsAg to elucidate the factors that may modify its sensitivity, and to perform a cost-benefit analysis for this diagnostic technique.
MATERIAL AND METHODS

HBsAg determination

The Imx HBsAg assay (Abbott Laboratories, Abbott Park, IL), which is a qualitative third-generation microparticle Enzyme Immunoassay (EIA), was used for HBsAg assessment. The presence or absence of HBsAg is determined by comparing the rate of fluorescent product formation to a cutoff, which is calculated from the negative calibrator (N) rate (human plasma nonreactive for HBsAg). The Imx HBsAg assay calculates a ratio of the sample (S) rate to the negative calibrator rate. The cutoff value (S/N) was established as 2 for the single-serum EIA.

The pooling technique is carried out by adding 200 mcL to the pool, that is, by obtaining a mixture of 40 mcL of each of the 5 sera making up the pool (dilution 1/5). The cutoff was established as the mean for negative samples plus 3 standard deviations, thus yielding a value of 1. It is considered, therefore, that a non-reactive sample exists in this group of 5 when the S/N coefficient is < cutoff value, while an S/N pool > cutoff may indicate the presence of at least one reactive sample. In this case, it is necessary to retest individual samples in order to identify the reactive sample (s). All tests are performed in duplicate.

In accordance with the above, specificity was evaluated by HBsAg assessment in 50 pools of 250 negative sera. In order to calculate sensitivity, 40 sera with the same concentration distribution as the general population from which they were sampled [ranging from weak to intensely HBsAg positive (S/N single = 2.06-154.9)] were tested in a pool with 4 negative sera.

HBsAg subtypes (ad and ay)

The limit of detection of Imx HBsAg for ad and ay was evaluated using sera from a panel of purified HBsAg subtypes (hepatitis HBsAg sensitivity panel, Abbott Laboratories). HBsAg/ad and HBsAg/ay concentrations ranged from 0.13 to 2.32 ng/mL and from 0.21 to 2.24 ng/mL, respectively. The limit of detection was determined in single and in a pool with 4 HBsAg negative sera.

Influence of anti-HBs level

In order to ascertain whether the existence of anti-HBs antibodies in the sera studied using the pooled test might neutralize HBsAg and interfere with the technique’s sensitivity we applied the method of pooling a serum with a known concentration of HBsAg/ad and HBsAg/ay with four sera with known titers of anti-HBs.

The quantitative determination of anti-HBs was carried out with a microparticle Enzyme Immunoassay (mEIA) method using an AxSYM autoanalyzer (AxSYM™ AUSAB, Abbott Laboratories, Abbott Park, IL). Sera with high anti-HBs titers were obtained from post-vaccinated HBV controls and patients who have recovered from hepatitis B.

Pool-test in screening of HBsAg

In order to assess the validity of pool testing, a simulation of field operations was conducted using the above method on 1,525 serum samples obtained from pregnant women in a previous study by us to estimate the prevalence of HCV infection, and whose samples were stored at -20 ºC since collection. We randomly selected 300 negative HBsAg and 14 positive HBsAg samples from these. Determinations were made with no previous knowledge of pool compositions.

Reduction in number of tests

When a pool results positive, it is necessary to individually retest each component in order to identify the sample or samples that are HBsAg-positive. Thus, the greater the number of positive pools (that is, the prevalence of HBsAg), the smaller the reduction in the number of tests performed.

On this basis, the percentage reduction in the number of tests when pooled sera screening for HBsAg was used, was calculated under the most unfavorable and unlikely conditions (low prevalence), that is, when not more than one positive serum was present in any of the pools. For example, for an HBsAg seroprevalence of 2%, if 100 sera are analyzed in 20 pools, 2 of these will be positive. So, it is necessary to add 10 determinations (10 sera retested individually) to the 20 initial ones (20 pools), this yielding 30 determinations in total. In this example, 70% of the cost could be saved. In order to carry out a cost-benefit analysis, the price of HBsAg testing was estimated to be 3 US dollars for each sample. This being based on the average actual price of the commercial kit in our hospital.

Statistical analysis

Data were collected in a database and later analyzed using the statistical package SPSS for Windows, Release 10.0. Spearman’s non-parametric linear correlation was employed. Results are expressed as mean ± SD. A level of p < 0.05 was considered statistically significant.

RESULTS

None of the 50 pools of HBsAg-negative sera resulted positive (S/N pool > 1), and the following values of S/N pool were obtained: 0.767 ± 0.076 (range 0.67-0.88).
With this sample, the specificity of this pooling technique was therefore 100%. On the other hand, all 40 HBsAg-positive sera, when determined in pooled form, yielded S/N values greater than 1 (with sensitivity also being 100%). The correlation coefficient among S/N ratios for these 40 samples as studied in single and in pool was 0.792 (p < 0.05).

Twenty-six point six percent of pools with samples having high HBsAg titers had an S/N ratio even greater than the single sample. However, the correlation coefficient of samples with low HBsAg titers (S/N single < 25, n = 12) was excellent (R = 0.9739, p < 0.05), as can be seen (Fig. 1).

The limit of detection using the single method was 0.34 ng/mL for the ad subtype and 0.29 ng/mL for the ay subtype, while for the pooling method lower levels of antigen were detected: 0.20 ng/mL and 0.12 ng/mL, respectively. The results of applying the single and pooled techniques to sera with different concentrations of HBsAg/ad and HBsAg/ay are shown (Fig. 2).

When the anti-HBs titer in the pool is less than 100 IU/L, the technique does not lose sensitivity; even when anti-HBs titers reach 10,000 IU/L, the technique is still capable of detecting HBsAg concentrations as low as 1.5 ng/mL. The influence of the different concentrations of anti-HBs on the limit of detection for HBsAg subtypes when using the pooling method are presented (mean of 2 determinations) (Fig. 3).

In the investigation carried out under real conditions in the sera of pregnant women, the method of pooling resulted in the correct classification of all samples analyzed. Consequently, sensitivity and specificity were 100%.

There is a decrease in the percentage of reduction in the number of tests achieved with the pooling method as the seroprevalence of HBsAg increases. It can be seen that even with HBsAg prevalences as high as 10% in the sample studied, a minimum saving of at least 30% is reached (Fig. 4).

The analysis of the economic benefits of the serum pooling strategy shows that the savings achieved depend on both the prevalence of HBsAg and the number of determinations to be made. Thus, for countries with a low prevalence such as ours, the pooling method reduces testing cost for HBsAg. For example, we estimated that in 2,500 determinations performed in a laboratory during one year using the pooling method, savings will be 5,630 US dollars, and in the case of a very busy hospital performing 20,000 determinations annually, savings will reach 45,000 US dollars (Table I).

DISCUSSION

An approach to the pooling method is to maintain the dilution and final volume of the reaction mixture in each
pooled test in order not to lose sensitivity, for which the diluent is reduced, and partly replaced by the additional sera. In this way it is not necessary to modify the cutoff value with respect to the standard method in individualized samples. However, the method used in our study was automated and sample dilution was performed by an autoanalyzer. For this reason, each sample shows a dilution of 1 in 5 on being mixed with the other 4 sera. Therefore, it was necessary in our study to modify the cutoff value and limit the number of sera in the pool in order not to lose sensitivity.

Regarding specificity, it is necessary to remark that the mean value for pools was only just over 3 standard deviations from the cutoff. Thus, a false positive might be expected in about 1% of occasions. We think that this is acceptable as specificity is nearly 100% (99.9%). A study with a greater number of negative samples from a large number of different individuals will be required in order to establish the true specificity of this assay.
Although the correlation between single and pooled sample testing is good, the regression line intercepts the X axis at an S/N ratio of 3 (the corresponding Y value is 1). This may mean that any sample with an S/N ratio between 2 and 3 in the single sample test would have a value below 1 and would therefore not be detected in the pooled test.

For a prevalence of 1% of HBsAg-positive sera, a mathematical model described by Liu et al. (19) achieved the maximum reduction (80.5%) in the number of tests for a pool size of 11 sera. However, in our opinion, a problem might arise with specificity due to the effect of pooling on the false-positive rate. An increase in nonspecific proteins, as a result of the mixture of sera, may give rise to an increase in background color. With the pool size of 5 chosen for our study, and the change of the cutoff value from 2 to 1, no losses in sensitivity (false negatives) or specificity (false positives) were observed.

The results of the present study show that the technique of pooling sera for the detection of HBsAg is highly sensitive and specific, and also permits considerable economic savings. These findings are similar to those obtained by other investigators who applied the method of pooling to the study of HCV and HIV infection (5-19). Up to the present, only two studies (20,21) have been reported concerning the application of the pooling method to the study of HBV infection. In one of these (20), performed when carrying out routine antenatal screening for hepatitis B by testing 10 sample pools, the authors found a low prevalence of chronic carriers (0.43%), and conclude that this is a cost-effective method and a valid strategy in areas of low seroprevalence, with a reduction in sensitivity estimated at 4.2%. The application in our study of the pooling method to pregnant women, amongst whom the prevalence of chronic carriers of HBsAg is 0.93%, demonstrated a sensitivity and specificity of 100%.

The distribution of the two major subtypes of HBsAg (ad and ay) in our environment is approximately 50% for each one, ay being more frequent in drug addicts who use the parenteral route (22). We have demonstrated that the pooling method improves sensitivity, that is, decreases the detection limit of an immunoassay used for the determination of the two major HBsAg subtypes. Our pooling technique allows detecting quantities as small as 0.20 ng/mL of HBsAg/ad, and 0.12 ng/mL of HBsAg/ay, even lower than those obtained with the standard method. The finding of increased sensitivity with pool testing is not surprising as this has been reported by other authors (16). It is important to assess the sensitivity of the EIA kit used for the pool testing, because not all kits may be suitable for screening pools, as has been demonstrated in the case of antibodies against the hepatitis C virus (23,24).

The presence of anti-HBs in the pool sera could modify the sensitivity of the technique, but only in a significant way in titers higher than 10,000 IU/mL, seen only in samples from post-vaccination control studies; in this situation, the determination of HBsAg is not indicated. In fact, Cunningham et al. (20) found that only 4.5% of pools made up with sera of pregnant women had an anti-HBs titer greater than 7,500 IU/L. Bearing in mind this limitation to the sensitivity of the pooling method, they found that this was also around 100% in sensitivity and specificity. Our results could be reproducible in other areas of low prevalence, but they should be demonstrated previously in areas with a high endemicity for HBV. In these areas, the majority of the population is already immunized against this virus, and it is possible that anti-HBs titers found in sera are slightly elevated.

Rabenau et al. (21) studied the safety of serologic tests in plasma pools for HBsAg using an EIA system similar to ours. In their study, the detection of HBsAg was influenced by the presence of low anti-HBs titers after 5 hours of incubation. However, following immune complex dissociation, HBsAg was still detectable in the pool even in the presence of high anti-HBs content. In our study we demonstrate that only a significant decrease in sensitivity results for anti-HBs titers higher than 10,000 IU/L. These differences can be due to the fact that in our case samples were tested without previous incubation. This could prevent antigen neutralization by immunocomplex formation.

We therefore believe that, both the titer of anti-HBs in serum and the pre-test processing of samples with EIA may influence pooling method sensitivity. Every laboratory desiring to use this technique should bear in mind these two factors before general use is implemented.

WHO recommends the use of the serum pooling method in case of HIV infection, when the prevalence of disease is less than 2%, and with a maximum pooling of 5 sera (25). Following these indications, most studies apply and recommend the use of pooling techniques in areas of low seroprevalence. In our study, we demonstrate that the pooling of sera may also be cost-effective in populations with a high prevalence of HBsAg carriers. This could permit its use in countries belonging to areas of medium and high endemicity for HBV infection, which in general coincides with underdeveloped or developing countries, that is, those which have a greater need for reducing the economic costs involved in laboratory testing. Nevertheless, it will be necessary to carry out similar studies in these areas in order to confirm our results. However, it has already been demonstrated that in countries such as Kenya, which has a high frequency of HIV infection (7.3%), the application of pooling for its detection would permit 62% economic savings with no significant loss in safety (14). In Spain, a country belonging to an area of low endemicity for HBV infection, and with a frequency of HBsAg carriers in the general population of 1.2% (4), it may be used in all those groups in which screening for HBsAg is currently mandatory (such as blood donors, subjects undergoing autotransfusion programs, screening of pregnant women).

The cost-benefit study of applying techniques for detecting chronic carriers of HBV allows to demonstrate...
that economic savings are greater when made in a large number of determinations in groups of low seroprevalence, and its use could also be cost-effective in areas with a high prevalence of infection, and even in laboratories carrying out a small number of determinations. We have shown economic cost savings according to both different HBsAg prevalence and number of tests to be performed annually. In our area, the application of the pooling method could save around 74% of total economic costs when compared to the single method.

Some investigators have recently begun to practice strategies for the detection of viral nucleic acids in blood donors using polymerase chain reaction (PCR) in order to increase the safety involved in the transfusion of blood derivatives (26-29). Due to the fact that it is not possible to carry out individual screenings because of economic problems and the amount of work involved, the method of pooling samples of serologically negative blood is now in use. This procedure might increase blood safety through a systematic screening of blood donations at a relatively low cost. Since one of the main limitations in practicing these methods is economical, we believe that, with our study, there could be a theoretical basis for the use of screening for HBV, HCV and HIV infections in two stages at a relatively low economic cost. In the first phase a commercial EIA could be applied to a pool of donor sera; in the second phase, the application of PCR techniques to a pool of seronegative samples could increase the safety of the analysis. Until future studies can prove the value of this technique with blood donors, we believe that this could be applied only to diagnostic and epidemiologic testing.

We conclude that the application of EIA to pooled sera is a sensitive and specific method in the detection of the two major HBsAg subtypes in an area of low seroprevalence. Sensitivity only decreases when very high titers of anti-HBs exist in the pooled sera. The pooling technique is a method that may also permit financial savings if employed in the study of populations with a high prevalence of HBsAg carriers. We believe that further studies are necessary to confirm these findings.

ACKNOWLEDGEMENTS

We wish to thank David H. Wallace (a member of the European Association of Science Editors and the Council of Biological Editors) for the English language translation of the manuscript.

REFERENCES

1. Maynard JE. Hepatitis B: global importance and need for control. Vaccine 1990; 8 (Suppl.): 18s-20s.
Detección de HBsAg usando mezcla de sueros. Estudio coste-beneficio

E. Fernández, L. Rodrigo¹, S. García, S. Riestra¹ y C. Blanco

Servicio de Análisis Clínicos. Hospital de Cabueñes. Gijón. ¹Servicio de Gastroenterología. Hospital Universitario Central de Asturias. Oviedo

RESUMEN

Objetivos: examinar la fiabilidad y realizar un estudio coste beneficio de una estrategia de mezcla de 5 muestras usando un enzimainmunoanálisis (EIA) para el cribado del HBsAg.

Material y métodos: para evaluar la sensibilidad y especificidad del método de mezcla de sueros se determinaron 40 sueros HBsAg positivos (de débil a intensamente positivos) y 250 sueros HBsAg negativos en mezcla con 4 sueros HBsAg negativos. El límite de detección para el HBsAg/ad y HBsAg/ay se evaluó usando suero de un panel de subtipos purificados. Se llevó a cabo un estudio en condiciones reales usando mezcla de sueros de 314 mujeres gestantes.

Resultados: la sensibilidad y especificidad de esta técnica fue del 100%. El coeficiente de correlación entre los ratios muestra / punto de corte de las 40 muestras estudiadas en determinación simple y en mezcla fue 0,792 (p < 0,005). El método de mezcla de sueros detectó niveles más bajos de HBsAg/ad y HBsAg/ay (0,20 ng/mL y 0,12 ng/mL) que el método simple (0,34 ng/mL y 0,29 ng/mL, respectivamente). Un análisis coste-beneficio mostró que el método de mezcla puede ahorrar de un 30 a un 75% de el coste de la determinación de HBsAg para seroprevalencias de un 10 y 1%, respectivamente.

Conclusiones: el método de determinación de HBsAg en mezcla de sueros no muestra peor rendimiento diagnóstico que el método simple y es una estrategia coste efectiva válida en áreas de baja prevalencia.

Palabras clave: Antígeno de superficie de la hepatitis B. Mezcla de sueros. Coste-beneficio.

INTRODUCCIÓN

Se estima que unos 300 millones de personas a lo largo del mundo están afectadas por el virus de la hepatitis B (VHB) (1). Su principal reservorio son los portadores crónicos de VHB. Las consecuencias médicas de la infección por el VHB son variables e impredecibles, dependiendo de factores tales como la edad y el status inmune del paciente. El VHB es un conocido agente etiológico causante de hepatitis crónica, cirrosis hepática y carcinoma hepatocelular.

No obstante, existen grandes diferencias en la prevalencia de la infección, habiéndose establecido tres áreas de alta, media y baja endemicidad (2). En la mayoría de los países desarrollados la prevalencia de portadores crónicos de HBsAg es menor del 2%, y la transmisión de la enfermedad se produce principalmente en adultos pertenecientes a ciertos grupos de riesgo (usuarios de drogas vía parenteral, homosexuales, heterosexual promiscuos, personal sanitario) (3). En España se ha encontrado una prevalencia de portadores de HBsAg del 1,2% (4), estando indicada la de determinación de HBsAg en donantes de sangre, gestantes y pacientes en programa de autotransfusión.

La técnica de mezcla de sueros intenta reducir costes sin pérdida de eficacia, y ha sido principalmente empleada en países en desarrollo en la búsqueda de anticuerpos contra el VIH (5-14) y contra el virus de la hepatitis C (15-19). Los resultados obtenidos con este método han sido altamente prometedores y han descendido significativamente el coste de los tests de laboratorio, sin producir un significativo desceso en su sensibilidad. El presente estudio está dirigido a evaluar si la técnica de mezcla de sueros es aplicable a la detección de HBsAg, y a esclarecer los factores que pueden modificar su sensibilidad, así como a realizar un estudio coste-beneficio de la misma.

MATERIAL Y MÉTODOS

Determinación del HBsAg

Se empleó un enzimainmunoensayo de micropartículas de tercera generación para la determinación de HBsAg (Abbott Laboratories, Abbott Park, IL). La presencia o ausencia de HBsAg se determinó comparando la intensidad de formación de producto fluorescente con el punto de corte, que es calculado a partir del nivel de fluorescencia del calibrador negativo (N) (plasma humano no reactivo para HBsAg). El IMx HBsAg calcula el cociente de la intensidad de fluorescencia de la muestra (S) y el nivel de intensidad del calibrador negativo. El punto de corte (S/N) se estableció en 2 para la determinación simple.

La técnica de mezcla de sueros se lleva a cabo añadiendo 200 mL al pocillo, es decir, una mezcla de 40 mL de cada uno de los 5 sueros que componen la mezcla (dilución 1/5). Las consecuencias medicas de la infección por el VHB son variables e impredecibles, dependiendo de factores tales como la edad y el status inmune del paciente. El VHB es un conocido agente etiológico causante de hepatitis crónica, cirrosis hepática y carcinoma hepatocelular.

No obstante, existen grandes diferencias en la prevalencia de la infección, habiéndose establecido tres áreas de alta, media y baja endemicidad (2). En la mayoría de los países desarrollados la prevalencia de portadores crónicos de HBsAg es menor del 2%, y la transmisión de la enfermedad se produce principalmente en adultos pertenecientes a ciertos grupos de riesgo (usuarios de drogas vía parenteral, homosexuales, heterosexual promiscuos, personal sanitario) (3). En España se ha encontrado una prevalencia de portadores de HBsAg del 1,2% (4), estando indicada la de determinación de HBsAg en donantes de sangre, gestantes y pacientes en programa de autotransfusión.

La técnica de mezcla de sueros intenta reducir costes sin pérdida de eficacia, y ha sido principalmente empleada en países en desarrollo en la búsqueda de anticuerpos contra el VIH (5-14) y contra el virus de la hepatitis C (15-19). Los resultados obtenidos con este método han sido altamente prometedores y han descendido significativamente el coste de los tests de laboratorio, sin producir un significativo desceso en su sensibilidad. El presente estudio está dirigido a evaluar si la técnica de mezcla de sueros es aplicable a la detección de HBsAg, y a esclarecer los factores que pueden modificar su sensibilidad, así como a realizar un estudio coste-beneficio de la misma.

MATERIAL Y MÉTODOS

Determinación del HBsAg

Se empleó un enzimainmunoensayo de micropartículas de tercera generación para la determinación de HBsAg (Abbott Laboratories, Abbott Park, IL). La presencia o ausencia de HBsAg se determina comparando la intensidad de formación de producto fluorescente con el punto de corte, que es calculado a partir del nivel de fluorescencia del calibrador negativo (N) (plasma humano no reactivo para HBsAg). El IMx HBsAg calcula el cociente de la intensidad de fluorescencia de la muestra (S) y el nivel de intensidad del calibrador negativo. El punto de corte (S/N) se estableció en 2 para la determinación simple.

La técnica de mezcla de sueros se lleva a cabo añadiendo 200 mL al pocillo, es decir, una mezcla de 40 mL de cada uno de los 5 sueros que componen la mezcla (dilución 1/5). El punto de corte se estableció como la media de las muestras negativas más 3 desviaciones estándar, obteniendo un valor de 1. Se considera, por consiguiente, que existe una muestra no reactiva en el grupo de 5 cuando el cociente S/N es menor que el punto de corte, mientras que un cociente S/N mayor que el punto de corte indicaría la existencia de la presencia de al menos una muestra positiva en la mezcla. En
este caso es necesario realizar la determinación en las muestras aisladas para identificar la muestra positiva. Todos los tests fueron hechos en duplicado.

De acuerdo con lo anterior, se realizó un cálculo aproximado de la especificidad mediante la determinación de HBsAg en 50 mezclas de 250 sueros negativos. Para calcular la sensibilidad, 40 sueros con la misma distribución que la población general de la cual fueron extraídos [de débil a intensa positividad (S/N = 2,06-154,9)] fueron determinados en mezcla con 4 sueros negativos.

Subtipos del HBsAg (ad y ay)

El límite de detección del IMx HBsAg para los subtipos ad y ay fue evaluado usando suero de un panel de subtipos HBsAg ad y ay purificados (*hepatitis HBsAg sensitivity panel*, Abbott Laboratories). Las concentraciones de HBsAg/ad y HBsAg/ay fueron de 0,13 a 2,32 y de 0,21 a 2,24 ng/mL, respectivamente. El límite de detección se determinó en sencillo y en mezcla con 4 sueros HBsAg negativos.

Influencia del nivel de anti-HBs

Para averiguar si la existencia de anticuerpos anti-HBs en los sueros estudiados con el empleo de la técnica de mezcla pueden neutralizar el HBsAg e interferir con la sensibilidad de la técnica, aplicamos el método de mezcla a sueros con una concentración conocida de HBsAg/ad y HBsAg/ay, junto con cuatro sueros con títulos conocidos de anti-HBs. La determinación cuantitativa de anti-HBs fue llevada a cabo mediante un ensayóoinmunoanálisis de micropartículas usando un autoanálsízeres Axsym (Axsym™ AUSAB, Abbott Laboratories, Abbott Park, IL). Se obtuvieron sueros con títulos elevados de anti-HBs a partir de controles postvacunales y de pacientes recuperados de una hepatitis B.

Mezcla de sueros en el cribado de HBsAg

Para evaluar la utilidad del método de mezcla de sueros, se llevó a cabo una simulación de las condiciones de campo empleando el anterior método con muestras de mujeres gestantes procedentes de un estudio previo de prevalencia de infección por el VHC realizado por nuestro grupo. Las muestras fueron congeladas a -20 °C tras su obtención. Aleatoriamente se seleccionaron 300 muestras HBsAg negativas y 14 HBsAg positivas. Las determinaciones fueron hechas sin previo conocimiento de la composición de las mezclas.

Reducción en el número de tests

Cuando una mezcla resulta positiva es necesario realizar la determinación con cada uno de sus componentes para identificar la muestra o muestras que son HBsAg positivo. Así, a mayor número de mezclas positivas (es decir, a mayor prevalencia de HBsAg), menor es la reducción en el número de tests realizados. Se calculó el porcentaje de reducción en el número de tests al usar el método de mezcla en las condiciones más desfavorables y más improbables (bajas prevalencias), cuando no existe más de un suero HBsAg positivo en ninguna de las mezclas. Por ejemplo, para una seroprevalencia de HBsAg de un 2%, si se analizan 100 sueros en 20 mezclas, 2 de ellos serán positivos. Por tanto, es necesario añadir 10 determinaciones (10 sueros ensayados individualmente) a los 20 iniciales (20 mezclas), resultando 30 determinaciones en total. En este ejemplo, se ahorrare el 70% del coste. Para llevar a cabo un estudio coste-beneficio se calculó el precio de una determinación de HBsAg en 3 euros.

Análisis estadístico

Los datos se recogieron en una base de datos y fueron analizados mediante el paquete informático SPSS para Windows, versión 6.0. Se empleó la correlación no paramétrica de Spearman. Los resultados se expresan como la media ± 2 DE. Se consideró un nivel de p < 0,05 como estadísticamente significativo.

RESULTADOS

Ninguno de las 50 mezclas de HBsAg negativo resultaron positivas (S/N mezcla > 1), obteniéndose en las mezclas los siguientes valores de S/N: 0,767 ± 0,076 (rango 0,67-0,88). En nuestro estudio la especificidad de la técnica de mezcla fue del 100% (IC 95%: 98,1-99,9). De otro lado, los 40 sueros HBsAg proporcionaron valores de S/N > 1 (sensibilidad = 1) cuando se determinaron en mezcla. El coeficiente de correlación entre los cocientes S/N de las determinaciones individuales y en mezcla de las 40 muestras estudiadas fue 0,792 (p < 0,05).

Un 26% de las mezclas con muestras con altos títulos de HBsAg presentaron un S/N incluso mayor que la técnica de mezcla fue del 100% (IC 95%: 98,1-99,9). De otro lado, los 40 sueros HBsAg proporcionaron valores de S/N > 1 (sensibilidad = 1) cuando se determinaron en mezcla. El coeficiente de correlación entre los cocientes S/N de las determinaciones individuales y en mezcla de las 40 muestras estudiadas fue 0,792 (p < 0,05).

Un 26% de las mezclas con muestras con altos títulos de HBsAg presentaron un S/N incluso mayor que la muestra individual. No obstante, el coeficiente de correlación de las muestras con bajos títulos de HBsAg (S/N individual < 25, n =12) fue excelente (R = 0,9739, p < 0,05), como se muestra en la figura 1.

La figura 2 muestra los resultados de las técnicas en muestra individual y en mezcla de sueros con diferentes concentraciones de HBsAg/ad y HBsAg/ay. El límite de detección usando el método individual fue de 0,34 ng/mL para el subtipo ad y de 0,29 ng/mL para el subtipo ay, mientras que con el método de mezcla se detectaron niveles más bajos de antígeno, 0,20 y 0,12 ng/mL, respectivamente.

La influencia de las diferentes concentraciones de anti-HBs sobre el límite de detección de los subtipos de HBsAg cuando se usa el método de mezcla se muestra en la figura 3 (media de 2 determinaciones). Cuando el título
en la mezcla es menor de 100 UI/L, la técnica no pierde sensibilidad; e incluso cuando el título de anti-HBs alcanza las 10.000 UI/L, la técnica es todavía capaz de detectar concentraciones de HBsAg tan bajas como 1,5 ng/mL.

En la investigación llevada a cabo con sueros de mujeres gestantes bajo condiciones reales, el método de mezcla consiguió la clasificación correcta de todas las muestras analizadas. Consecuentemente, la especificidad y sensibilidad fueron del 100%.

La figura 4 muestra el descenso en el porcentaje de reducción en el número de tests alcanzado con el método de mezcla cuando la seroprevalencia de HBsAg aumenta. Se puede observar que incluso con prevalencias en la muestra estudiada tan elevadas como el 10%, se alcanza un mínimo de ahorro de un 30%.

El análisis del beneficio económico de la estrategia de mezcla sérica muestra que el ahorro alcanzado depende tanto de la prevalencia como del número de determinaciones a realizar. Así, para países de baja prevalencia como el nuestro, el método de mezcla reduce el coste del cribado de HBsAg. Por ejemplo, hemos estimado que para un laboratorio que realice 2.500 determinaciones anuales el método de mezcla consigue un ahorro de 5.630 euros, pudiendo llegar a 45.000 euros para el caso de un hospital con 20.000 determinaciones anuales (Tabla I).

Tabla I. Ahorro de costes (miles de dólares) cuando se utiliza la estrategia de mezcla de sueros de acuerdo a la seroprevalencia del HBsAg y al número de muestras a analizar

<table>
<thead>
<tr>
<th>Nº de muestras/año</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.500</td>
<td>5.63</td>
<td>5.25</td>
<td>4.12</td>
<td>2.25</td>
</tr>
<tr>
<td>5.000</td>
<td>11.25</td>
<td>10.5</td>
<td>8.24</td>
<td>4.5</td>
</tr>
<tr>
<td>10.000</td>
<td>22.5</td>
<td>21</td>
<td>16.5</td>
<td>9</td>
</tr>
<tr>
<td>20.000</td>
<td>45</td>
<td>42</td>
<td>33</td>
<td>18</td>
</tr>
</tbody>
</table>

DISCUSIÓN

Una aproximación al método de mezcla consiste en mantener la dilución y el volumen final de la muestra de reacción en cada mezcla, de cara a no perder sensibilidad, para lo que se reduce el diluyente y se reemplaza por el suero adicional. De esta manera no es necesario modificar el punto de corte respecto al método con muestras individuales. No obstante, el método usado en nuestro estudio está automatizado y la dilución de la muestra la realizó un autoanalizador. Por esta razón cada muestra sufrió una dilución a 1/5 al ser mezclada con otros 4 sueros. Por consiguiente, fue necesario en nuestro estudio modificar el punto de corte y limitar el número de sueros en el mezcla de cara a no perder sensibilidad.

En relación con la especificidad, es necesario remarcar que el valor medio de las mezclas cayó justo a 3 desviaciones estándar del punto de corte. Así, un falso positivo podría esperarse en un 1% de los casos. Pensamos que esto es aceptable ya que la especificidad es casi del 100% (99,9%). Para establecer la verdadera especificidad de este ensayo se requiere un estudio con un mayor número de muestras negativas.

Aunque la correlación entre el método de mezcla y el método individual es buena, la línea de regresión intercepta el eje X a un valor de S/N de 3 (el correspondiente valor de Y es 1). Esto puede significar que cualquier muestra con un cociente S/N entre 2 y 3 en el test individual podría tener un valor menor de 1 y no ser detectado, por consiguiente, con el método de mezcla.

Para una prevalencia de HBsAg positivo de un 1%, un modelo matemático descrito por Liu y cols. (19), alcanzó la máxima reducción (80,5%) en el número de tests con un tamaño de mezcla de 11 sueros. No obstante, en nuestra opinión podría surgir un problema con la especificidad debido al efecto del mezcla sobre el nivel de falsos positivos. Un incremento en las proteínas no específicas, como resultado de la mezcla de sueros, podría originar un aumento en el color de fondo. Con el tamaño de mezcla de 5 sueros escogido en nuestro estudio y el cambio del punto de corte de 2 a 1, no se observaron pérdidas en la sensibilidad (falsos negativos) ni en la especificidad (falsos positivos).

Los resultados del presente estudio muestran que la técnica de mezcla sérica para la detección de HBsAg es altamente sensible y específica, permitiendo un considerable ahorro económico. Estos hallazgos son similares a los obtenidos por otros investigadores que aplicaron el método de mezcla al estudio de la infección por VHC y VIH (5-19). Hasta el presente, solamente han sido descritos 2 estudios (20,21) sobre el método de mezcla aplicado al HBsAg. En uno de estos estudios (20), aplicado al cribado de HBsAg prenatal con mezcla de 10 muestras, los autores encontraron una baja prevalencia de portadores crónicos (0,43%), y concluyeron que es un método coste-efectivo y una estrategia válida en áreas de baja prevalencia, con una reducción en la sensibilidad estimada de un 4,2%. En nuestro estudio, la aplicación del método de mezcla a mujeres gestantes, entre las que la prevalencia de HBsAg es del 0,93%, demostró una sensibilidad y especificidad del 100%. La distribución de cada uno de los 2 principales subtipos de HBsAg (ad y ay) en nuestro entorno es aproximadamente del 50%, siendo el subtipo ay más frecuente en adictos a drogas vía parenteral (22). En nuestro estudio hemos demostrado que el método de mezcla mejora la sensibilidad, es decir, desciende el límite de detección del inmunoensayo usado para la determinación de los 2 principales subtipos de HBsAg. Nuestra técnica de mezcla nos permitió detectar cantidades tan pequeñas como 0,20 ng/mL de HBsAg/ay, incluso menores que las obtenidas con el método estándar. El hallazgo de una incrementada sensibilidad con el método de mezcla no es sorprendente y ya ha sido descrito por otros autores (16). Es importante evaluar la sensibilidad del test ELISA usado para el método de mezcla, debido a que no todos los “kits” pueden ser convenientes para métodos de cribado, como se ha demostrado en el caso del antígeno del virus de la hepatitis C (23,24).
La presencia de anti-HBs en el mezcla de sueros podría modificar la sensibilidad de la técnica, pero solamente de manera significativa con títulos mayores de 10.000 UI/L, vistos solamente en muestras de estudios postvacunales; en esta situación, la determinación de HBsAg no está indicada. De hecho, Cunninghan y cols. (20) encontraron que solamente 4,5% de las mezclas de sueros de mujeres gestantes tenían un título de anti-HBs mayor de 7.500 UI/L. Teniendo presente esta limitación de la sensibilidad de la técnica de mezcla sérica, encontraron una sensibilidad y especificidad cercana a 100%. Nuestros resultados podrían ser reproducibles en otras áreas de baja prevalencia, pero deberían ser demostrados en áreas de alta endemicidad para el VHB. En estas áreas la mayoría de la población está ya inmunizada contra este virus y es posible que los títulos de anti-HBs encontrados en el suero estén ligeramente elevados. Rabenau y cols. (21), usando un ELISA similar al nuestro, estudiaron la fiabilidad de los tests serológicos de HBsAg en mezclas de plasma. En su estudio, la detección de HBsAg estuvo influenciada por la presencia de bajos títulos de anti-HBs después de 5 horas de incubación. No obstante, tras la disociación del inmunocomplejo, el HBsAg fue detectable en el mezcla incluso en presencia de alto contenido en anti-HBs. En nuestro estudio, demostramos que sólo se produce un descenso significativo en la sensibilidad para títulos de anti-HBs mayores de 10.000 UI/L. Estas diferencias pueden ser debidas al hecho de que en nuestro caso las muestras fueron analizadas inmediatamente, sin incubación previa. Esto podría prevenir la neutralización del antígeno debida a la formación de inmunocomplejos. Por consiguiente, pensamos que el título de anti-HBs en suero y el procesamiento previo al análisis de las muestras podría influir en la sensibilidad del método de mezcla sérica. Los laboratorios que usen esta técnica deberían de tener presentes estos dos factores antes de su uso generalizado.

Para la infección por VIH, la OMS acepta el empleo del método de mezcla cuando la mezcla es de 5 sueros y la prevalencia de la enfermedad es menor del 2% (25). Siguiendo estas indicaciones, la mayoría de los estudios aplican y recomiendan el uso de técnicas de mezcla en áreas de baja prevalencia. En nuestro estudio, demostramos que la técnica de mezcla podría también ser coste-efectiva en poblaciones con una alta prevalencia de HBsAg. Esto podría permitir su uso en países pertenecientes a áreas de baja y alta endemicidad de infección por VHB, que coincide en general con países subdesarrollados o en vías de desarrollo, es decir, aquellos que tienen una mayor necesidad de reducir los costes económicos de los tests de laboratorio. No obstante, es necesario llevar a cabo en estas áreas estudios similares para confirmar nuestros resultados. Ya se ha demostrado que en países como Kenia, con una alta frecuencia de infección por VIH (7,3%), la aplicación de la mezcla sérica para su detección podría permitir un ahorro económico del 62%, sin una pérdida significativa de seguridad en las determinaciones (14). En España, un país perteneciente a un área de baja endemicidad de infección por VHB, y con una frecuencia de portadores de HBsAg en la población general del 1,2% (4), podría ser usado en todos aquellos grupos en que el cribado para HBsAg es obligado (tal como donantes de sangre, sujetos en programas de autotransfusión, cribado de gestantes).

El estudio coste-beneficio de aplicar técnicas para la detección de portadores crónicos de VHB, nos permite demostrar que el ahorro económico es mayor cuando se aplica a un gran número de determinaciones en grupos de baja seroprevalencia, y su uso podría ser también coste-efectivo en áreas con alta prevalencia de infección, e incluso en laboratorios que llevan a cabo un pequeño número de determinaciones. La tabla I muestra el ahorro económico, de acuerdo a las diferentes prevalencias de HBsAg y al número anual de determinaciones. En nuestra área la aplicación del método de mezcla podría ahorrar alrededor de un 74% del coste económico, comparado con el método sencillo.

Algunos investigadores han comenzado recientemente a practicar estrategias para la detección de ácidos nucleicos virales en donantes de sangre, usando la reacción en cadena de la polimerasa (PCR), con el fin de incrementar la seguridad de la transfusión de hemoderivados (26-29). Debido al hecho de que no es posible llevar a cabo el cribado individual por los problemas económicos y la carga de trabajo implicada, está en uso el método de mezcla de las muestras serológicas negativas. Este mecanismo podría aumentar la seguridad de la sangre mediante el cribado sistemático de donaciones de sangre a coste relativamente bajo. Dado que una de las principales limitaciones de emplear estos métodos es la económica, pensamos que con nuestro estudio habría una base teórica para el empleo del cribado de infección por VHB, VHC y VIH en dos etapas a un coste económico relativamente bajo. En la primera fase, un ELISA comercial podría ser aplicado a una mezcla de donantes de sangre; en la segunda fase, la aplicación de técnicas de PCR a una mezcla de muestras seronegativas podría incrementar la seguridad del análisis. Hasta que futuros estudios puedan probar que el método con donantes de sangre, pensamos que se aplicaría únicamente con un fin diagnóstico y epidemiológico. Podemos concluir que la aplicación de un ELISA a una mezcla de sueros, es un método sensible y específico en la detección de los 2 principales subtipos de HBsAg en un área de baja seroprevalencia. La sensibilidad solamente decrece cuando existen títulos muy altos de anti-HBs en el mezcla de sueros. La técnica de mezcla es un método que podría también permitir un ahorro económico si se emplea en el estudio de poblaciones con una alta prevalencia de portadores de HBsAg. Se requieren más estudios para confirmar estos hallazgos.

AGRADECIMIENTOS

Damos las gracias a David H. Wallace (member of the European Association of Science Editors and the Council of Biological Editors) por la traducción al inglés de este artículo.