Oscillations in serum ferritin associated with antiviral therapy in chronic hepatitis C

Services of Gastroenterology (Liver Unit), Pathology, Clinical Microbiology, and Hematology, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain

ABSTRACT

Background: hyperferritinemia is often found in patients with chronic hepatitis C (CHC) and is predictive of poorer response to antiviral therapy.

Objective: to investigate changes in ferritinemia during and after antiviral therapy.

Patients and methods: serum ferritin levels were measured in 262 CHC patients (163 males, mean age 48.5 years ± 10.1) before and during antiviral therapy, and six months post-treatment in all 154 patients with undetectable serum HCV-RNA after therapy completion.

Results: baseline serum ferritin was higher in patients with primary therapeutic failure than in those reaching sustained viral response (330 ± 291 ng/mL vs. 211 ± 192 ng/mL, p = 0.002). Serum ferritin transiently increased during therapy from baseline (257 ± 242 ng/mL vs. 875 ± 630 ng/mL, p < 0.001). Six months after finishing therapy, serum ferritin decreased under baseline values both in sustained responders (117 ± 102 ng/mL vs. 211 ± 192 ng/mL, p < 0.001) and, to a lesser extent, in relapsers (217 ± 174 ng/mL vs. 257 ± 221 ng/mL, p = 0.047).

Conclusions: baseline serum ferritin may predict response to antiviral treatment in chronic hepatitis C. Combined antiviral therapy induces a marked increase in serum ferritin that falls below baseline values after sustained viral response, suggesting that the cause of hyperferritinemia in many patients is HCV infection itself rather than iron overload.

Key words: Serum ferritin. Hepatitis C. Peglated interferon. Ribavirin.

INTRODUCTION

Liver iron overload is considered a surrogate marker of liver fibrosis (1,2), and is associated with impaired response to interferon-based therapy (3,4). However, the frequency and severity of iron overload in chronic hepatitis C, which oscillates between broad limits, from 7 to 32% (2,5-8), remains controversial. Iron accumulation in the liver may aggravate tissue damage by generating free radicals, releasing proinflammatory and profibrogenic cytokines, and interfering with the immune system (9,10).

High serum ferritin is a common finding in many acquired liver diseases, particularly in chronic hepatitis C (CHC), alcoholic liver disease, and non-alcoholic fatty liver disease (11,12). Ferritin is the iron-storage protein in tissues, and its serum levels correlate with total iron content; thus, it may be speculated that high serum ferritin levels may be a marker of iron overload. This is usually true in the absence of chronic inflammation, with very rare exceptions (13), but ferritin synthesis and release are increased in states of chronic immune stimulation (9,14), and the actual meaning of hyperferritinemia in CHC has not been fully elucidated. If it were a consequence of hepatic iron overload, a positive correlation between both parameters would be expected. However, this is only true when CHC coincides with a genetic cause of iron overload, as it occurs in carriers of HFE gene mutations (mainly the C282Y mutation) or other genes related to iron homeostasis (6,8,15). Contrarily, if elevated serum
ferritin in CHC were a surrogate marker of a chronic inflammatory state, we should expect that serum ferritin levels would return to normal values after successful antiviral therapy.

The aim of this work was to study the variations of serum ferritin concentrations during and after antiviral therapy in patients with chronic hepatitis C virus (HCV) infection, and to investigate whether a potential association with therapeutic response exists.

PATIENTS AND METHODS

Since January 2004, serum ferritin concentration is systematically determined in all CHC patients seen at our Unit before initiating treatment with pegylated interferon (α2a or α2b) and ribavirin, and at regular intervals during therapy. Serum ferritin is also determined in patients who reach a final virological response (defined as blood HCV-RNA undetectable at the end of therapy) 24 weeks after finishing treatment. We reviewed the clinical records of these patients with the aim of studying variations in ferritinemia during and after therapy. Patients were classified in four groups after excluding those who dropped out for voluntary discontinuation -- group 1: sustained viral response (SVR); group 2: primary failure of therapy; group 3: early discontinuation due to severe intolerance; and group 4: relapse after transient viral response. Other exclusion criteria were chronic hemolysis, previous therapy with iron, coinfection with HIV, and active infection with HBV. HFE genotype was not systematically determined in patients with elevated serum ferritin, but only in some cases according to the clinical criteria of the attending physician. All patients were submitted to the current standard of care on an outpatient basis. The study protocol was approved by the Local Ethics Committee and conforms to the ethical guidelines of the Declaration of Helsinki.

The diagnosis of chronic hepatitis C was based on the results of clinical evaluation and a combination of biochemical and viral tests. All patients were positive for anti-HCV antibody and for HCV RNA at the time when antiviral therapy was started. A quantitative analysis of HCV-RNA was performed with the Cobas Amplicor HCV Monitor version 2.0 (Roche Molecular Diagnostics). The lower limit of detection was 600 IU/mL, and the upper level was 8.5 x 10^5 IU/mL. After July 2005, viral RNA was extracted automatically using Cobas AmplicPrep, but viral load was detected using Real-Time PCR Cobas TaqMan (Roche Diagnostics), that has a dynamic range between 10 IU/mL and 2 x 10^6 IU/mL.

HCV genotypes were determined using a reverse hybridization assay (INNO-LiPA. Innogenetics), based on the variations found in the 5′ untranslated region of various hepatitis C virus sequences, after amplification by a reverse transcription polymerase chain reaction (RT-PCR). Active hepatitis B virus (HBV) infection and HIV infection were excluded by standard serological analysis. Active infection with HBV and HIV were excluded using standard serological methods. Hematological and biochemical parameters were determined with standard methods in the clinical laboratory.

The statistical analysis was performed using Student’s t-test or the Mann-Whitney U-test, as indicated, to compare continuous variables, odds ratios with 95% confidence intervals for categorical variables, and Spearman’s rank test to estimate correlations between variables. Values are expressed as mean ± standard deviation (SD) or as percentages. All tests were two-sided. Calculations were made using the SPSS statistical software package for Windows (version 15.0; SPSS) and Epi-Info 2002 (Centers for Disease Control and Prevention). The null hypothesis was rejected when p < 0.05.

RESULTS

Two hundred and sixty-two patients (163 male; mean age 48.5 years ± 10.1) fulfilling the inclusion criteria were considered for the analysis. One hundred and eighty-three were infected with HCV genotype 1 (143 genotype 1b), 55 with genotype 3, and the remaining with genotypes 2, 4 and 5. Pre-treatment liver biopsies were available for 136 patients, and were evaluated according to Knodell et al. (16)
Baseline serum ferritin correlated at a significant level (p ≤ 0.001) with the following baseline values: body weight, hemoglobin, total serum bilirubin, serum ALT, serum AST, and serum iron.

Mean serum ferritin increased during the first 12 weeks of therapy from 257 ± 242 ng/ml to 875 ± 630 ng/dl (p < 0.001), to diminish slowly during the remaining part of therapy (613 ± 418 ng/dl at week 24 in the 179 patients with available values). Serum ferritin increased during therapy in 259 of the 262 patients included in the study. The median peak ferritin level reached during therapy was lower in the SVR group than in the other three groups, a difference that reaches statistical significance when comparing SVR and primary failure groups (p = 0.018).

The highest serum ferritin level reached between weeks 2 and 12 of therapy correlated at a significant level (p ≤ 0.001) with the following parameters: baseline body weight; baseline serum iron; platelet count and total serum bilirubin at week 2, and serum ALT, serum AST.

Table I. Clinical, biochemical, virological, and histological characteristics of patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total patients</th>
<th>Group 1 (SVR)</th>
<th>Group 2 (primary failure)</th>
<th>Group 3 (intolerance)</th>
<th>Group 4 (relapse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>262</td>
<td>121</td>
<td>81</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>163/99</td>
<td>72/49</td>
<td>n.s.</td>
<td>52/29</td>
<td>12/15</td>
</tr>
<tr>
<td>Age</td>
<td>48.5 (10.1)</td>
<td>45.4 (9.8)</td>
<td>< 0.001</td>
<td>51.3 (9.2)</td>
<td>53.0 (11)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>72.7 (12.8)</td>
<td>72.3 (12.1)</td>
<td>n.s.</td>
<td>72.4 (12.4)</td>
<td>74.2 (16.1)</td>
</tr>
<tr>
<td>Genotype</td>
<td>183</td>
<td>72</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
<td>95% CI = 0.18-0.73</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>37</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baseline serum ferritin (ng/ml)</td>
<td>< 400.000</td>
<td>49 (18.8 %)</td>
<td>34 (27.7 %)</td>
<td>8 (9.9 %)</td>
<td>4 (14.8 %)</td>
</tr>
<tr>
<td>> 400.000</td>
<td>213 (81.2 %)</td>
<td>87 (72.3 %)</td>
<td>79 (90.1 %)</td>
<td>23 (85.2 %)</td>
<td>29 (87.9)</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>15.1 (1.2)</td>
<td>15.0 (1.2)</td>
<td>n.s.</td>
<td>15.4 (1.2)</td>
<td>14.7 (1.3)</td>
</tr>
<tr>
<td>Platelets/mL (x 10^9)</td>
<td>199 (59)</td>
<td>213 (56)</td>
<td>< 0.001</td>
<td>179 (51)</td>
<td>191 (82)</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td>0.88 (0.36)</td>
<td>0.83 (0.35)</td>
<td>n.s.</td>
<td>0.91 (0.36)</td>
<td>1.00 (0.46)</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>110 (89)</td>
<td>112 (91)</td>
<td>n.s.</td>
<td>121 (101)</td>
<td>97 (57)</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>74 (60)</td>
<td>68 (56)</td>
<td>0.008</td>
<td>87 (76)</td>
<td>75 (43)</td>
</tr>
<tr>
<td>GGT (IU/L)</td>
<td>87 (119)</td>
<td>61 (81)</td>
<td>< 0.001</td>
<td>129 (172)</td>
<td>78 (65)</td>
</tr>
<tr>
<td>Serum iron (µg/ml)</td>
<td>127 (45)</td>
<td>121 (47)</td>
<td>n.s.</td>
<td>136 (42)</td>
<td>131 (44)</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>179 (40)</td>
<td>187 (43)</td>
<td>0.018</td>
<td>171 (38)</td>
<td>172 (40)</td>
</tr>
<tr>
<td>Knodell fibrosis index</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>0-1 vs. 3-4</td>
<td>4</td>
</tr>
<tr>
<td>(136 cases)</td>
<td>1</td>
<td>59</td>
<td>32</td>
<td>Odds ratio = 2.81</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>44</td>
<td>17</td>
<td>95% CI = 1.18-6.87</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

All continuous variables are expressed as mean (standard deviation) values. Comparisons were made with the Mann-Whitney U-test for independent variables or Wilcoxon’s paired t-test for related variables, each when adequate.

The excess of female patients in this group is significant as compared to the remaining patients (Odds ratio = 2.84; 95% CI = 1.08-8.78).
and serum GGT at weeks 2, 6 and 12. No significant relation exists between the highest serum ferritin value reached during therapy and hemoglobin values at weeks 2, 6 and 12 of therapy, nor with the baseline viral load considered as a dichotomous (low vs. high) variable (low ≤400.000 IU)(17).

As it is shown in table II, serum ferritin value 24 weeks after therapy completion was significantly lower than baseline figures in the 121 patients who obtained sustained viral response. This parameter actually decreased in 88.4% of patients included in this group. This difference is much smaller in the 33 patients who experienced virological relapse, in whom serum ferritin decreased only in 66.7%. This difference between both response groups correlates well with the evolution of serum ALT, which fell from 110 ± 88 U/L to 20 ± 9 U/L in sustained responders (p = 0.033), with an actual decrease in 75.8% of patients.

When the same analysis was applied separately to the 183 genotype 1 patients, the results were very close to those found in the whole group, although the drop in serum ferritin 24 weeks after end of therapy in relapers did not reach statistical significance (data not shown).

In the 136 patients with available liver biopsy there is a non-significant although progressive increase in baseline serum ferritin according to fibrosis stage in the Knodell score: stage 0 (20 patients) = 104 ± 159 ng/mL; stage 1 (59 patients) = 212 ± 158 ng/mL; stage 3 (44 patients) = 260 ± 274 ng/mL; stage 4 (13 patients) = 408 ± 396 ng/mL (p stage 0 vs. stage 4 = 0.197).

Stainable iron was detected in the liver biopsy of 8 patients (5.90% of cases with liver biopsy). Baseline serum ferritin was higher in these patients than in the remaining 128 with liver biopsy (481 ± 450 ng/dl vs. 231 ± 210 ng/ml, p = 0.083). No significant differences were observed for baseline serum iron values, nor for the maximal ferritin value during the first 12 weeks of therapy.

DISCUSSION

In this study we observed an impressive and nearly universal elevation of serum ferritin during combined antiviral therapy for CHC. The maximal values reached are slightly higher in the groups of primary failure, relapse, and intolerance than in the SVR group, but the increases are proportional to baseline values and the slopes are no different. The mechanism of hyperferritinemia is probably related to the immunostimulant and immunoregulatory effects of IFN-α2 through its attachment to cell-surface receptors and activation of multiple interferon-stimulated genes (i.e. TNF-α, IL-1 and IL-6)(20), which are known up-regulators of the synthesis of ferritin (21). Stam et al. (22) have shown a significant increase in serum ferritin in a group of patients treated with high doses of interferon α after the surgical excision of a melanoma. Recently, Ferrara et al. (23) reported, in abstract form, a study with results quite similar to ours with regard to a marked rise of serum ferritin dur-

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total patients</th>
<th>Group 1 (SVR)</th>
<th>Group 2 (primary failure)</th>
<th>Group 3 (intolerance)</th>
<th>Group 4 (relapse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline serum ferritin (ng/mL)</td>
<td>257 (242)</td>
<td>211 (192)</td>
<td>330 (291)</td>
<td>244 (250)</td>
<td>257 (221)</td>
</tr>
<tr>
<td>Highest serum ferritin (ng/mL)</td>
<td>875 (630)</td>
<td>753 (492)</td>
<td>988 (702)</td>
<td>936 (865)</td>
<td>996 (619)</td>
</tr>
<tr>
<td>Hemoglobin at week 12 (g/dL)</td>
<td>12.3 (1.4)</td>
<td>12.4 (1.4)</td>
<td>12.4 (1.4)</td>
<td>11.7 (1.6)</td>
<td>12.3 (1.1)</td>
</tr>
<tr>
<td>Total bilirubin at week 12 (mg/dL)</td>
<td>0.93 (0.41)</td>
<td>0.88 (0.40)</td>
<td>0.98 (0.44)</td>
<td>0.91 (0.44)</td>
<td>0.97 (0.35)</td>
</tr>
<tr>
<td>Serum ferritin 24 weeks after the end of therapy (ng/mL)</td>
<td>–</td>
<td>117 (102)</td>
<td>–</td>
<td>–</td>
<td>217 (174)</td>
</tr>
<tr>
<td>Hemoglobin 24 weeks after the end of therapy (g/dL)</td>
<td>–</td>
<td>14.9 (1.6)</td>
<td>–</td>
<td>–</td>
<td>15.1 (1.5)</td>
</tr>
<tr>
<td>Total bilirubin 24 weeks after the end of therapy (mg/dL)</td>
<td>–</td>
<td>0.73 (0.32)</td>
<td>–</td>
<td>–</td>
<td>0.74 (0.25)</td>
</tr>
</tbody>
</table>

All the continuous variables are expressed as media (standard deviation). The comparisons were made with the Mann-Whitney U test for independent variables or with the Wilcoxon paired t test for related variables, each when adequate.

HFE genotype is available in 37 patients in whom the attending physician considered that serum iron, ferritin and/or transferrin saturation index justified this study. There were 6 single heterozygotes for the C282Y mutation, 12 single heterozygotes for the H63D mutation, 1 composed C282/H63D heterozygote, 1 H63D homozygote and 17 wild type genotypes. No differences in baseline serum iron, baseline ferritinemia and in highest serum ferritin value reached during the first 12 weeks of therapy were observed between carriers and non-carriers of *HFE* mutations. A liver biopsy was available in 24 of these patients, with stainable iron in 5, three of them being carriers of one *HFE* mutation. Fifteen of these 37 patients obtained SVR (three C282Y carriers, five H63D carriers and seven patients without *HFE* gene mutations).
ing therapy, although they do not provide any data on its subsequent evolution.

Although serum ferritin is a well-known acute phase reactant, other possible causes for hyperferritinemia during antiviral therapy should be discussed. Ribavirin induces hemolysis, and the increase in serum ferritin may be due to accelerated iron turnover. On the other side, serum bilirubin may increase because of heme catabolism. In this study, baseline values for hemoglobin and total bilirubin correlated significantly with baseline serum ferritin, and this correlation persisted with serum bilirubin at week two of therapy, but not thereafter, and in no moment was that detected with hemoglobin. If hemolysis had been causally related to increased serum ferritin, narrowed, more significant correlations with hemoglobin and bilirubinemia should be expected during therapy versus baseline.

Our data on HFE gene mutations are very limited and biased through patients with higher baseline serum iron and ferritin values, but they do not confirm previous data on a possible association between carrier status for HFE gene mutations and an increased chance of obtaining SVR (24,25), a question not confirmed in a recent review (26).

Our results are in accordance with previous findings (23,24,27) indicating that high baseline serum ferritin levels are predictors of poor response to combined antiviral therapy for CHC. This suggests the convenience of analyzing whether ferritinemia may improve the multivariate predictive models aimed at establishing the individual chance of reaching therapeutic success in patients with CHC. Such analysis was not an aim of the present study, and should be based on a sample of greater size. Table I confirms that many of the reported factors predicting a primary therapeutic failure (older age, viral genotype, lower platelet count, high viral load, higher AST and GGT levels, and lower cholesterol, and more advanced fibrosis in liver biopsy) are more prevalent in the group of primary failure than in the group with SVR.

From a practical point of view, we think that the most interesting finding of this study is that serum ferritin falls not only to normal values, but as low as half its baseline figures at 24 weeks after therapy completion in patients who obtained SVR. Meanwhile, patients with virological relapse showed a much more modest decrease in serum ferritin. This observation leads to think that increased levels of serum ferritin in non-treated CHC are most often a consequence of actions by HCV itself or of chronic inflammation, which stimulates immune response. This conclusion is supported by our observation that serum ferritin levels parallel serum ALT, which is considered a biochemical marker of necroinflammation in the liver. Iron overload should be a secondary event limited to patients with associated specific conditions (i.e., carriers of HFE gene mutations or heavy drinkers).

ACKNOWLEDGEMENTS

The authors thank Dr. Julio Mayol for his critical revision of the manuscript.

REFERENCES

Oscilaciones de la ferritina sérica asociadas al tratamiento antiviral en la hepatitis crónica por virus C

Servicios de Aparato Digestivo (Unidad de Hígado), 1Anatomía Patológica, 1Microbiología Clínica y 1Hematología. Hospital Clínico San Carlos. Universidad Complutense de Madrid

RESUMEN

Antecedentes: la hiperferritinemia es frecuente en los enfermos con hepatitis crónica C (HCC) y reduce las probabilidades de respuesta al tratamiento antiviral.

Objetivo: investigar las variaciones de la ferritina sérica durante y después del tratamiento y su relación con la respuesta al mismo.

Pacientes y métodos: la ferritina sérica se ha medido en 262 enfermos con HCC (163 hombres, edad media 48,5 años ± 10,1) antes y durante el tratamiento antiviral, y a los 6 meses de finalizado en los 154 enfermos con viremia indetectable al final del tratamiento.

Resultados: la ferritina sérica basal era más alta en enfermos con fracaso terapéutico primario que en los que consiguieron respuesta viral sostenida (RVS) (330 ± 291 ng/ml vs. 211 ± 192 ng/ml, p = 0,002). La ferritina sérica aumentó transitoriamente durante el tratamiento (257 ± 242 ng/ml vs. 875 ± 630 ng/ml, p < 0,001). La ferritina sérica descendió a valores inferiores a los basales seis meses después de finalizado el tratamiento en los pacientes con RVS (117 ± 102 ng/ml vs. 211 ± 192 ng/ml, p < 0,001) y, en menor grado, en los que sufrieron recidiva viral (217 ± 174 ng/ml vs. 257 ± 221 ng/ml, p = 0,047).

Conclusiones: una ferritina sérica basal elevada se asocia con mayor riesgo de fracaso terapéutico en la HCC. El tratamiento antiviral induce un marcado incremento de la ferritina sérica que vuelve a valores por debajo de los basales en los enfermos que obtienen RVS. Esto sugiere que la causa de hiperferritinemia en la mayoría de los enfermos es la propia infección por VHC y no la sobrecarga de hierro.

INTRODUCCIÓN

Se considera que la sobrecarga hepática de hierro se asocia con fibrosis hepática en la hepatitis crónica C (HCC) (1,2) y con peor respuesta el tratamiento basado en interferón (3,4). Sin embargo, la frecuencia y la gravedad de la sobrecarga férrea en la hepatitis crónica C, que oscila entre límites muy amplios, del 7 al 32% (2,5-8), es objeto de controversia. La acumulación de hierro en el hígado puede agravar el daño hepático al generar radicales libres, facilitar la liberación de citocinas proinflamatorias e interferir con el sistema inmune (9,10).

En muchas hepatopatías adquiridas, y especialmente en la hepatitis crónica C, la hepatopatía alcohólica y la enfermedad hepática no alcohólica por depósito de grasa, es frecuente detectar niveles elevados de ferritina sérica (11,12). La ferritina es la proteína de depósito de hierro en los tejidos y sus niveles séricos están correlacionados con el contenido corporal total de hierro, por lo que se puede considerar que las concentraciones elevadas de ferritina son un marcador de sobrecarga de hierro. En general, esto es cierto en ausencia de inflamación crónica, con muy pocas excepciones (13), pero la síntesis y liberación de ferritina están incrementadas en situaciones de estímulo inmunitario crónico (9,14) y el significado exacto de la hiperferritinemia en la HCC no está plenamente esclarecido. Si la hiperferritinemia fuera consecuencia de una sobrecarga hepática de hierro, debería existir una correlación positiva entre ferritina sérica y hierro hepático. Sin embargo, esto sólo ocurre cuando la HCC coincide con...
una causa genética de sobrecarga férrea, como ocurre en portadores de mutaciones del gen HFE (especialmente la mutación C282Y) o de otros genes relacionados con la homeostasis del hierro (6,8,15). Por el contrario, si los niveles elevados de ferritina sérica fueron un marcador de un estado de inflamación crónica, cabría esperar que la ferritinemía volviera a la normalidad tras administrar tratamiento antiviral con éxito.

El objetivo de este estudio ha sido analizar las oscilaciones de las concentraciones de la ferritina sérica en enfermos con hepatitis crónica C e investigar si existe alguna relación de estas oscilaciones con el tratamiento.

PACIENTES Y MÉTODOS

Desde enero de 2004 determinamos sistemáticamente la concentración de ferritina sérica en todos los enfermos con HCC vistos en nuestra Unidad antes de iniciar tratamiento con interferón pegilado (α–2a or α–2b) y ribavirina, periódicamente durante el tratamiento y, sólo en aquellos enfermos que obtienen respuesta viral al final del tratamiento (definida como ARN del VHC indetectable en sangre), también 24 semanas después de la finalización. Hemos revisado los protocolos clínicos de estos enfermos para estudiar las oscilaciones de la ferritina sérica durante el tratamiento y después del mismo. Los enfermos se clasificaron en cuatro grupos, tras excluir los abandonos voluntarios con pérdida de seguimiento: grupo 1, respuesta viral sostenida (RVS); grupo 2, fracaso virológico primario; grupo 3, suspensión prematura por intolerancia grave; y grupo 4, recaída tras respuesta viral transitoria. Otros criterios de exclusión fueron la hemólisis crónica, el tratamiento previo con hierro, la coinfección por VIH y la infección activa por VHB. El genotipo HFE no se determinó sistemáticamente en los enfermos con ferritina sérica elevada, sino sólo en aquellos casos en los que el médico responsable lo consideró indicado. Los enfermos recibieron el tratamiento antiviral establecido por las guías clínicas en vigor y no fueron sometidos a ningún procedimiento extraordinario que precisara consentimiento informado. El protocolo de estudio se ajusta a las normas éticas de la Declaración de Helsinki y fue aprobado por el Comité de Ética e Investigación Clínica del Hospital.

El diagnóstico de hepatitis crónica C se basó en los resultados de la evaluación clínica y en la combinación de pruebas bioquímicas y virológicas. Todos los pacientes tenían antecuerpos circulantes contra el VHC y niveles detectables de ARN del VHC en la sangre al comenzar el tratamiento antiviral. El análisis cuantitativo del ARN del VHC se realizó con el método Cobas Amplicor HCV Monitor versión 2.0 (Roche Molecular Diagnostic), cuyo límite inferior de detección son 600 IU/ml y el superior 8,5 x 10^4 IU/ml. Desde julio de 2005, el ARN viral se extrae automáticamente con el método Cobas AmpliPrep, pero la carga viral se detecta mediante Real-Time PCR Cobas TaqMan (Roche Diagnostics), que tiene un rango dinámico entre 10 IU/ml and 2 x 10^6 IU/ml.

Los genotipos del VHC se identificaron mediante análisis de hibridación inversa (INNO-LiPA. Innogenetics), basado en las variaciones identificadas en la región no traducida 5’ de las diferentes secuencias de los virus de la hepatitis C tras amplificar mediante reacción inversa en cadena de la polimerasa (RT-PCR). La infección activa por el virus de la hepatitis B y la infección por VIH se excluyeron mediante los métodos serológicos habituales. Las determinaciones hematimétricas y bioquímicas, incluyendo sideremia y ferritina séricas, se realizaron con los métodos habituales en el laboratorio del centro.

El análisis estadístico se basó en los tests t de Student y U de Mann-Whitney, según procediera, para comparar las variables continuas, y en la determinación de la odds ratio con su intervalo de confianza al 95% para comparar variables categóricas. Las correlaciones entre variables se analizaron mediante los test de rangos de Spearman. Todas las pruebas fueron bilaterales. Los cálculos se llevaron a cabo con los paquetes estadísticos SPSS (versión 15.0) para Windows y EpInfo 2002 (Centers for Disease Control and Prevention). La hipótesis nula se descartó cuando p < 0,05.

RESULTADOS

Se incluyeron en el análisis 262 pacientes (163 varones; edad media 48,5 años ± 10,1). Ciento ochenta y tres estaban infectados por el genotipo 1 del VHC (143 genotipo 1b), 55 por genotipo 3 y los restantes por los genotipos 2, 4 y 5. En 136 enfermos se disponía de resultado de biopsia hepática previa al tratamiento; las biopsias fueron evaluadas de acuerdo con los criterios de Knodell y cols. (16) por el mismo patólogo. En todas ellas se aplicó la tinción de Perls, específica para hierro. La tabla I resume los datos bioquímicos, virológicos e histológicos del conjunto de los enfermos y de cada uno de los cuatro grupos de respuesta.

En el 27,8% de los enfermos la sideremia basal era superior a 150 μg/ml. La ferritina sérica basal estaba elevada en el 25,2% de los varones (> 350 ng/ml) y en el 19,2% de las mujeres (> 250 ng/ml). La tabla II refleja los valores medios de ferritina sérica antes y durante el tratamiento en el conjunto de los enfermos y en los subgrupos establecidos por la respuesta al tratamiento, y los obtenidos 24 semanas después de finalizado el tratamiento en los grupos 1 (respuesta viral sostenida) y 4 (recidiva). La ferritina basal era significativamente más elevada en los 81 pacientes con fracaso terapéutico primario (grupo 2) que en los 121 (grupo 1) que obtuvieron RVS (330 ± 291 vs. 211 ± 192, p = 0,002). No existen diferencias significativas entre los valores de ferritina sérica basal entre los grupos 1 (RVS), 3 (intolerancia) y 4 (re-
caída), ni tampoco entre los niveles basales de hierro sérico entre los diferentes grupos de respuesta (Fig. 1).

La ferritina sérica basal estaba correlacionada con un alto nivel de significación (p \leq 0,001) con los siguientes valores basales: peso corporal, hemoglobina, bilirrubina sérica total, ALT, AST y sideremia.

La ferritina sérica se incrementó durante las primeras 12 semanas del tratamiento desde 257 ± 242 ng/ml hasta 875 ± 630 ng/ml (p < 0,001), para disminuir gradualmente durante el resto del mismo (613 ± 418 ng/ml en la semana 24 en los 179 pacientes en los que se dispone de este valor). La ferritina sérica se incrementó durante el tratamiento en 259 de los 262 pacientes incluidos en el estudio. El máximo valor alcanzado por la ferritina sérica fue menor en el grupo que obtuvo RVS que en de fracaso primario (p = 0,018), pero las pendientes de ascenso son equiparables (Fig. 1).

La máxima concentración de ferritina sérica alcanzada durante las semanas 2ª a 12ª del tratamiento guardaba correlación altamente significativa (p \leq 0,001) con los siguientes parámetros: sideremia basal, bilirrubinemia total en la semana 2ª, y ALT, AST y GGT en las semanas 2ª, 6ª y 12ª. No se detectó relación significativa alguna entre el máximo valor de ferritina alcanzado en este periodo y las determinaciones de hemoglobina realizadas en las semanas 2, 6 y 12 del tratamiento, ni tampoco con la carga viral basal, considerada esta última como variable categórica (menor o mayor de 400.000 UI) (17).

Como se muestra en la tabla II, las concentraciones de ferritina sérica 24 semanas después de finalizado el tratamiento fueron significativamente menores que los correspondientes valores basales en los 121 enfermos que obtuvieron RVS. Este parámetro se redujo en el 88,4% de los enfermos de este grupo. Esta diferencia es mucho menor en los 33 enfermos que experimentaron recidiva viral, en los cuales la ferritina sérica disminuyó sólo en el 66,7%. Esta diferencia entre los dos grupos de respuesta guarda una correlación estrecha con la evolución de la ALT sérica, que cayó de 110 ± 88 IU/L a 20 ± 9 IU/L en el grupo de respuesta viral sostenida (p < 0,001), con tan solo dos

Tabla I. Características clínicas, bioquímicas, virológicas e histológicas de los pacientes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total pacientes</th>
<th>Grupo 1 (RVS)</th>
<th>p (grupo 1 vs. grupo 2)</th>
<th>Grupo 2 (fracaso primario)</th>
<th>Grupo 3 (intolerancia)</th>
<th>Grupo 4 (recaída)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de casos</td>
<td>262</td>
<td>121</td>
<td>81</td>
<td>27</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Sexo (hombres/mujeres)</td>
<td>163/99</td>
<td>72/49</td>
<td>n.s.</td>
<td>52/29</td>
<td>12/15</td>
<td>27/6</td>
</tr>
<tr>
<td>Edad (años)</td>
<td>48,5 (10,1)</td>
<td>45,4 (9,8)</td>
<td>< 0,001</td>
<td>51,3 (9,2)</td>
<td>53,0 (11)</td>
<td>49,0 (9,1)</td>
</tr>
<tr>
<td>Peso corporal (kg)</td>
<td>72,7 (12,8)</td>
<td>72,3 (12,1)</td>
<td>n.s.</td>
<td>72,4 (12,4)</td>
<td>72,4 (11,0)</td>
<td>74,2 (16,1)</td>
</tr>
<tr>
<td>Genotipo</td>
<td>1</td>
<td>183</td>
<td>72</td>
<td>n.s.</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>n.s.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>55</td>
<td>37</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carga viral (UI/ml)</td>
<td>< 400.000</td>
<td>49 (18,8 %)</td>
<td>34 (27,7 %)</td>
<td>n.s.</td>
<td>8 (9,9%)</td>
<td>4 (14,8%)</td>
</tr>
<tr>
<td></td>
<td>> 400.000</td>
<td>213 (81,2 %)</td>
<td>n.s.</td>
<td>79 (90,1%)</td>
<td>23 (85,2%)</td>
<td>29 (87,9)</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>15,1 (1,2)</td>
<td>15,0 (1,2)</td>
<td>n.s.</td>
<td>15,4 (1,2)</td>
<td>14,7 (1,3)</td>
<td>15,5 (1,3)</td>
</tr>
<tr>
<td>Plaqueta (x 10^9/cm³)</td>
<td>199 (59)</td>
<td>213 (56)</td>
<td>< 0,001</td>
<td>179 (51)</td>
<td>191 (82)</td>
<td>209 (56)</td>
</tr>
<tr>
<td>Bilirrubina total (mg/dl)</td>
<td>0,88 (0,36)</td>
<td>0,83 (0,35)</td>
<td>n.s.</td>
<td>0,91 (0,36)</td>
<td>1,00 (0,46)</td>
<td>0,87 (0,29)</td>
</tr>
<tr>
<td>ALT (IU/l)</td>
<td>110 (89)</td>
<td>112 (91)</td>
<td>n.s.</td>
<td>121 (101)</td>
<td>97 (57)</td>
<td>88 (66)</td>
</tr>
<tr>
<td>AST (IU/l)</td>
<td>74 (60)</td>
<td>68 (56)</td>
<td>0,008</td>
<td>87 (76)</td>
<td>75 (43)</td>
<td>61 (31)</td>
</tr>
<tr>
<td>GGT (IU/l)</td>
<td>87 (119)</td>
<td>61 (81)</td>
<td>< 0,001</td>
<td>129 (172)</td>
<td>78 (65)</td>
<td>84 (75)</td>
</tr>
<tr>
<td>Sideremia (µg/ml)</td>
<td>127 (45)</td>
<td>121 (47)</td>
<td>n.s.</td>
<td>136 (42)</td>
<td>131 (44)</td>
<td>120 (46)</td>
</tr>
<tr>
<td>Colesterol (mg/dl)</td>
<td>179 (40)</td>
<td>187 (43)</td>
<td>0,018</td>
<td>171 (38)</td>
<td>172 (40)</td>
<td>174 (33)</td>
</tr>
<tr>
<td>Índice de fibrosis de Knodell</td>
<td>0</td>
<td>20</td>
<td>12</td>
<td>0-1 vs. 3-4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>59</td>
<td>32</td>
<td>0,007</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>44</td>
<td>17</td>
<td>95% CI = 1,18-6,76</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Todas las variables continuas se expresan como media (desviación estándar). Las comparaciones se han realizado con el test U de Mann-Whitney para variables independientes o con el test t pareado de Wilcoxon para variables relacionadas, cada uno cuando era adecuado.

1-El exceso de mujeres en este grupo es significativo comparado con el resto de los pacientes (Odds ratio = 2,84; 95% IC = 1,08-8,78).
Doctores no portadores de mutaciones HFE. Sí disponía de determinación del genotipo HFE en 37 pacientes en los cuales el médico responsable consideró que los valores de sideremia basal, ferritina sérica o índice de saturación de transferrina justificaban esta determinación. Seis pacientes eran heterocigotos simples para la mutación C282Y, 12 eran heterocigotos simples para la mutación H63D, uno era heterocigoto compuesto C282/H63D, uno era homocigoto H63D y 17 no tenían ninguna de estas dos mutaciones. No se apreciaron diferencias significativas entre la sideremia, la ferritinemía basal y el máximo valor de ferritina sérica alcanzado durante las primeras 12 semanas de tratamiento entre portadores y no portadores de mutaciones HFE. Se dispone de biopsia hepática en 24 de estos enfermos, con tinción positiva para hierro en 5, tres de los cuales eran portadores de alguna mutación HFE. Quince de estos 37 pacientes obtuvieron RVS (3 portadores de la mutación C282Y, 5 portadores de la mutación H63D y 7 sin mutaciones HFE).

DISCUSIÓN

En este estudio hemos observado un aumento muy marcado y casi universal de la ferritina sérica durante el tratamiento antiviral combinado contra la hepatitis crónica C. El origen de esta hiperferritinemia guarda probablemente relación con los efectos inmunostimulantes e inmunorreguladores del interferón α-2 mediante su unión con receptores de la membrana celular y la activación de numerosos genes estimulados por interferón (18,19), así como con una respuesta Th-1 que incrementa la síntesis y liberación de citocinas proinflamatorias (por ejemplo TNF-α, IL-1 and IL-6) (20), que son conocidas como suprrereguladoras de la síntesis de ferritina (21). Stam y cols. (22) detectaron un incremento significativo de la ferritina sérica en un grupo de pacientes tratados con dosis altas de interferón alfa tras excisión de un melanoma. Recientemente, Ferrara y cols. (23) han comunicado, en forma de resumen, un estudio cuyo resultado son bastante similares a los nuestros en lo que se refiere al marcado aumento de la ferritina sérica durante el tratamiento antiviral, aunque nada dicen de su evolución posterior.

Aunque la ferritina sérica es un consenso reactante de fase aguda, es necesario analizar otras posibles causas de hiperferritinemia durante el tratamiento antiviral. La riva-virina induce hemólisis y el aumento de la ferritina sérica podría deberse a aceleración del turnover férrico. Al mismo tiempo, la bilirrubina sérica debería incrementarse como consecuencia del catabolismo de una mayor cantidad de hem. En este estudio, los valores basales de hemo-
globina y de bilirrubina total guardaban una correlación significativa con los valores basales de ferritina sérica. Sin embargo, el máximo valor de ferritina alcanzado durante las primeras 12 semanas de tratamiento sólo mostró correlación significativa con la bilirrubinemia en la segunda semana, pero no en las semanas siguientes, y en ningún momento con la hemoglobina. Si la hemólisis hubiera estado en relación con el aumento de la ferritina sérica, cabría esperar que este parámetro guardara correlación inversa con la hemoglobina y la hubiera estrechado con la bilirrubinemia, cosa que no ocurrió.

Nuestros datos sobre las mutaciones del gen HFE son muy limitados y sesgados hacia pacientes con cifras anormalmente elevadas de sideremia y ferritina sérica, pero no confirman datos previos sobre una posible relación entre la posesión de alguna mutación HFE y una mayor probabilidad de conseguir RVS tras tratamiento antiviral combinado (24,25), extremo no confirmado en una reciente revisión (26).

Nuestros resultados se inscriben en la línea de hallazgos previos (23,24,27) que indican que valores elevados de ferritina sérica basal predicen una mala respuesta al tratamiento antiviral combinado de la HCC. Este dato sugiere la conveniencia de estudiar si la inclusión de la ferritinemia puede mejorar los modelos predictivos multivariantes orientados a establecer la probabilidad individual de obtener éxito terapéutico en enfermos con HCC. Este análisis no era un objetivo de este estudio ya que debe basarse en una muestra de mayor tamaño. La tabla I confirma que muchos de los factores relacionados con el fracaso terapéutico primario (edad avanzada, genotipo viral 1, recuento plaquetario bajo, carga viral elevada, niveles altos de AST y GGT y bajos de colesterol y estadios de fibrosis avanzada en la biopsia hepática) son más prevalentes en el grupo de fracaso primario que en el de RVS.

Desde un punto de vista práctico, consideramos que el hallazgo más interesante y plenamente original de este estudio es que la ferritina sérica desciende no sólo a los valores normales, sino por debajo de los basales, 24 semanas después de finalizado el tratamiento en aquellos pacientes que alcanzan respuesta viral sostenida, en tanto que aquellos pacientes que experimentan recidiva viral muestran un descenso mucho más moderado e inconstante. Esta observación nos lleva a concluir que los niveles elevados de ferritina sérica en la HCC no tratada dependerían en la mayoría de los casos de la acción del propio virus o de la inflamación crónica que la infección induce. Esta conclusión viene avalada además por el hecho de que la evolución de los valores de ferritina sérica sigue un curso paralelo al de la ALT, que se considera como un marcador bioquímico de necroinflamación hepática. La sobrecarga de hierro sería, en todo caso, un evento secundario limitado a pacientes con circunstancias específicas (por ejemplo, portadores de mutaciones HFE o bebedores excesivos).